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ABSTRACT: The dynamics of a polymer chain confined in a
soft 2D slit formed by two immiscible liquids is studied by
means of molecular dynamics simulations. We show that the
scaling behavior of a polymer confined between two liquids
does not follow that predicted for polymers adsorbed on solid
or soft surfaces such as lipid bilayers. Indeed, our results show
that in the diffusive regime the polymer behaves like in bulk
solution, following the Zimm model, and with the hydro-
dynamic interactions dominating its dynamics. Although the
presence of the interface does not affect the long-time diffusion
properties, it has an influence on the dynamics at short time
scale, where for low molecular weight polymers the
subdiffusive regime almost disappears. Simulations carried out when the liquid interface is sandwiched between two solid
walls show that, when the confinement is a few times larger than the blob size, the Rouse dynamics is recovered.

The prediction of structural and dynamical properties of
polymers at liquid/liquid interfaces is both a technological

and a biological problem. Indeed, polymers are confined at or
pass through liquid interfaces in many industrial processes, such
as liquid/liquid extractions, solvent displacement methods, or
emulsifications, and also when used for biological applications,
such as drug nanocarriers, biocompatibilizers, or protective
coatings.1−3 In these situations, the polymer chains can dissolve
in one of the two solvents or reside at the interface, depending
on their relative solubility. The latter case is quite common
since, in order to lower the interfacial free energy, polymers can
be adsorbed at the interface, behaving as surface active
molecules.4−7 When this situation occurs, the polymer chain
is confined in a “soft slit” characterized by a solvent density that
is lower than the bulk one. The experimental characterization of
polymers entrapped at soft interfaces is very challenging, and
the most common soft interface used is that formed by
phospholipid bilayers. The binding of the macromolecules on
the fluid surface formed by lipid molecules modifies both the
macromolecule and the interface dynamics. Upon adsorption of
polymer chains on supported lipid bilayers, the lipids show
dynamical heterogeneity with a bimodal distribution of their
diffusion coefficients at low polymer coverage.8,9 As expected,
the dynamics of the polymer itself is also affected by the
adsorption and presents an unexpected dependency with the
polymer molecular weight. Maeir and Radler10 studied the
dynamics of double-stranded DNA chains adsorbed on lipid
membranes in fluid state. They found that the polymer radius
of gyration (Rg) values follow the predicted scaling law Rg ∼
N−3/4 for a two-dimensional random walk, and the polymer
self-diffusion coefficient (D) scales with the chain monomer

number (N) following the Rouse-like regime (D ∼ N−1),
indicating that the hydrodynamic interactions (HI) are
screened in this situation. Similar results have also been
obtained by Zhang and Granick9 using synthetic macro-
molecules adsorbed on lipid monolayers. Explanations for such
screening included the possibility that the lateral movements of
the lipids dissipate energy, reducing the HI, and that the
polymer enters a reptation-like regime when confined on an
inhomogeneous surface.11,12

If the experimental characterization of macromolecule
dynamics at soft interfaces is difficult, their simulation is also
challenging. The available literature11−18 focuses only on the
modeling of polymer confined between solid surfaces (flat as in
a slit pore or rounded as in cylindrical pores) dissolved in a
good solvent often modeled as a continuum defined by a
friction coefficient and therefore ignoring any HI. For example,
Mukherji et al.19 performed molecular dynamics (MD)
simulations of a bead-and-spring polymer model adsorbed on
an attractive corrugated solid surface using implicit (good)
solvent. They found that, depending on the polymer topology
and the strength of the adsorption, D scales with N following
two scaling laws: D ∼ N−3/2 for strongly adsorbed linear chains
(reptation-like regime) and D ∼ N−1 (Rouse-like regime) for
ring polymers. The Rouse-like regime was also found for solid
surface with reduced roughness and for polymers adsorbed on
solid substrate, where the distance between the surface defects
equals the monomer bond length. Desai et al. used both
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implicit14 and explicit solvent11 MD simulations to model a
single polymer chain confined in two dimensions. The implicit
solvent simulations, on a surface containing impenetrable
obstacles, predicted a cross over between Rouse-type and
reptation-like behavior when the spacing between the obstacles
became comparable to the polymer end-to-end distance. Using
explicit solvent, the same authors recovered the Rouse-like
behavior (D ∼ N−1) for no-slip or corrugated surfaces, but
predicted a different scaling law, D ∼ N−3/4, for a polymer
adsorbed on an ideal smooth surface.
Although these simulations clarified that the roughness of the

solid surface plays an important role in determining the
dependence of D with the chain length, they did not answer the
question of what happens when the polymer chain is adsorbed
on a soft penetrable surface. Using an analytical approach,
Ramachandran et al.20 derived the mobility tensor for a
Gaussian polymer chain embedded in a liquid membrane
surrounded by bulk solvent and walls. The authors found that a
crossover between the Rouse and the Zimm-like dynamics is
indeed observed when the membrane is respectively
sandwiched between two walls or left unconstrained, and we
will show later that our molecular simulations agree with the
theory and show the same change in behavior when a liquid
interface is confined between two walls in close proximity. Here
we perform MD simulations where one single polymer chain is
confined in a 2D soft slit formed by two immiscible liquids,
both modeled as good solvent. The polymer chain and the
solvents are modeled using the same Lennard-Jones model we
employed in our previous work.4,5 Since the surface tension
between the two liquids is high enough and the polymer
conformational entropy is almost unchanged due to the
polymer adsorption at the interface, there is no need of any
external constraints to force the polymer chain to stay at the
interface, and standard equilibrium MD simulations can be
performed. All simulations were performed using the
GROMACS simulation package version 4.5.421 in the NPT
ensemble with reduced temperature and pressure of T* = 1 and
P* = 1, respectively. More details of simulations can be found
in the Supporting Information.
When polymers adsorb onto interfaces, they often adopt a
pancake-like conformation. This can be seen from the
eigenvalues of their gyration tensor in the plane of the interface
(xy), Rg∥, with Rg∥ = (Rgx

2 + Rgy
2 )1/2, against the number of

monomers, N, in Figure 1. The scaling law obtained is Rg∥ ∼
Nυ, with υ = 0.74, in agreement with the analytical exponent
predicted for a two-dimensional random walk υ = 0.75.17 This
result shows that, although there are no constraints imposed in
the model, the polymer chain sticks at the interface during the
whole simulation and structurally behaves as if it is confined in
a rigid 2D slit or strongly adsorbed on a solid surface. The same
exponent can be obtained if, instead of using Rg∥, the 3D Rg
value were used. The z (perpendicular to the surface)
component of the radius of gyration is indeed constant and
equal to σ, indicating that the confinement of the polymer is
commensurable with the monomer size. Figure 1 also reports
the results obtained from simulations performed in bulk
solution for which the same scaling law but with the expected
Flory exponent of υ = 0.60 was obtained.22

The dynamical properties of the polymer have been studied
in terms of end-to-end relaxation time (τR), central monomer
(g1), and polymer center of mass (g3) mean square displace-
ment

= ⟨ − ⟩g t R t R( ) [ ( ) (0)]i i i
2

(1)

where Ri(t) represents the position of the central monomer
(R1) or polymer center of mass (R3) at time t.
The corresponding diffusion time (τdiff) is defined as the time

required for a chain to move a distance of the order of its size
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where τdiff
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3 = τdiff.
We have considered primarily these parameters since it has

been shown that the diffusion coefficient, D
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where d corresponds to the dimension of the confinement (d =
2 for the polymer at the interface and d = 3 in bulk solvent)
depends on the simulation box size, L.23 This dependence due
to the long-range hydrodynamic effect is almost not observable
in other dynamical properties such as τR.

24 The value of the
end-to-end distance relaxation time, τR, can be obtained fitting
the autocorrelation function, C(t), of the end-to-end distance,
R, to an exponential function

τ= −C t C t( ) exp( / )0 R (4)

the fitting is performed until C(t) becomes negative. Figure 2
reports the value of τR (the values are reported along with their
errors in Table 1S, in the Supporting Information) plotted
against the number of monomers, N. The values obtained from
the simulations performed in bulk solvent show the expected
scaling law for a polymer in solution with HI, τR ∼ N3υ, known
as Zimm model, where υ is the Flory exponent and is equal to υ
= 0.588 in good solvent (0.60 ± 0.2 from our simulations, see
Figure 1). The fitting exponent obtained from the simulation
(1.79 ± 0.19) is in good agreement with the theory (1.77) and
previous simulations.22−24 The data obtained from the
simulation with the interface can be fitted with the same
scaling law, but the exponent is this time 2.05 ± 0.23, in good
agreement with the value typical of the Zimm model (2.19) and
smaller than that expected if the polymer followed either the
Rouse model (2.54) or the reptation, where τR ∼ N3 (in the
latter case, the exponent is independent from the value of the
Flory parameter, υ). In order to establish internal consistency in
our results, we plot the values of τR against the Rg values (Rg∥

Figure 1. Radius of gyration (xy component only for the interface
simulations (errors calculated as the standard deviation of the mean
are less than 10−3σ)) against number of monomer in the chain: red
circles, interfacial simulation data; black squares, bulk simulations. The
dotted lines represent the best fitting of the data points.
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for the interfacial simulations). Using the scaling law theory, the
values can be again fitted with a power function: the Zimm
model predicts that τR ∼ Rg

3, while the Rouse model predicts
that τR ∼ Rg

2+1/υ. The exponent obtained from our simulation
data is 2.8 ± 0.30 for both the bulk and interface model in
agreement with the Zimm model and far off from the Rouse
exponents (3.7 for bulk solution and 3.3 for 2D confinement).
The Zimm-like dynamics can also be seen from the central

monomer mean square displacement (g1; see eq 1) obtained for
the confined and bulk polymeric systems and noticed that a
crossover between two different dynamical behaviors occurs for
N = 40. Figure 3 shows g1 calculated for two polymer chains
with a molecular weight below and above N = 40 (N = 25 and
60). The plots reveal that the subdiffusive behavior shown by
short chains at the interface deviates from that typical of the
Zimm model. Polymer dynamic theory predicts22 three
dynamical regimes for polymer in solution: at short times (t
< τm), g1 should be proportional to the time (g1 ∼ t); for
intermediate times (τm < t < τ), g1 ∼ tγ with γ = 0.67 for the
Zimm model and γ = 0.54 if the chain dynamics obeys the
Rouse model; for long times (t > τm), g1 shows the final
diffusive regime and becomes proportional to t. Here, long
chains, N > 40, show indeed the Zimm exponent in their
subdiffusive regimes, although a fourth regime with g1 ∼ t0.8 can
also be observed in both bulk solvent and interfacial
simulations. This fourth regime has also been observed by
Azuma and Takayama25 for self-avoiding polymer confined in a
pore slit with regularly distributed obstacles and more recently

by Desai et al.14 However, what is more interesting is that, for
chains shorter than 40 monomers, the subdiffusive regime does
not follow either the theoretical Zimm exponent or the Rouse
one, but presents a much higher value equal to γ = 0.8. Figure 4

shows the time evolution of the subdiffusive exponents for
short polymer chains (N = 25) and long ones (N = 60; results
for N = 15 and 50 for comparison are reported in the
Supporting Information, Figure S1). It can be observed that, in
bulk solution, short polymer chains already present a value of γ
that is higher (around 0.70) than the expected Zimm value. In
bulk solution this behavior has already been observed23,24 and it

Figure 2. Logarithmic plot of the relaxation time, τR (in unit of τ), calculated from the autocorrelation time of the end-to-end distance (errors are
smaller than the symbols size and reported in Table 1S) as a function of the chain length, N, and radius of gyration, Rg. Dashed lines indicate the best
fitting for the data. Symbols as in Figure 1.

Figure 3. Time-dependence of mean-square displacement (MSD) of the central monomer, g1, for N = 25 (left) and 60 (right). The solid black line
represents the data obtained in bulk solution, while the solid red line represents the results of the interfacial simulations. The dashed lines indicate
the different slopes.

Figure 4. Slope of the mean-squared displacement (MSD) as a
function of time. The horizontal pointed lines indicate slope equal 1,
0.67, and 0.54 from the top to the bottom.
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has been ascribed to the increasing effect that the end-
monomer dynamics has on the central monomer ones for low
molecular weight polymers.24 The absence of a clear
subdiffusive Zimm regime for short polymer chains becomes
more evident when they are confined at the interface (Figure
4). Moreover, it seems that short chains remain trapped in a
semidiffusive regime and take a longer time to reach Fickian
diffusion compared with when they are immersed in the fluid.
This again illustrates that the difference between interfacial and
bulk dynamics depends on the polymer size; for larger
molecular weights (N > 40), the chain relaxation (measured
via its τR) is slower in bulk than at the interface, whereas for
shorter polymer chains, the τR calculated in bulk and at
interface is almost identical. This behavior is probably related to
the fact that short polymer chains do not assume the coil-like
structure typical of high molecular weight polymers, but
instead, they maintain a fairly elongated conformation in
solution of good solvent (see also the Rg values in Figure 1).
This elongated shape might justify also the high subdiffusive
exponent γ observed for short polymers in bulk. Indeed, the
presence of a subdiffusive regime arises from the fact that when
the polymer moves it must drag some of the solvent particles
with it. For coil-like structure polymer, the solvent particles
permeate inside the coil, while for short polymer chains, the
number of solvent molecules near the center of mass of the
polymer is smaller (see Figure 5); therefore, fewer solvent
particles are bound to the chain and it experiences less drag. To
investigate the dynamics of the solvent beads, the averaged
residence time (t) of a solvent bead within a distance d, with d
= rc = 2.5σ, is calculated; t is obtained from the numerical
integration of the autocorrelation function C(t) = ⟨∑h(t0)h(t0

+ t)⟩/⟨∑h(t0)
2⟩, where h(t) is a step function equal to 1 if the

solvent bead is within a distance d from a polymer bead at time
t and otherwise set to zero. The autocorrelation functions
calculated for L25 and L50 both in bulk solvent and at the
interface and the values of t are reported, respectively, in Figure
1S and Table 2S of the Supporting Information. The results
show that the solvent beads at the interface move faster than
those in bulk, however, their dynamics is the same, irrespective
of the polymer molecular weight.
Further confirmation of the Zimm-like dynamics comes from

considering the diffusion coefficient, D, and the relaxation time
of the central monomer diffusive motion, τdiff. Shown in Figure
6 are D and τdiff for polymers at the interface. Again, the
simulations give results that are in closer agreement to the
Zimm model, where D ∼ N−v and τdiff ∼ N(2v+1) than the Rouse
or reputation models. These data are reported for polymer
chains up to N = 60. As for longer chains, the error in D
remains significant even after 108 simulation time-steps. The
Zimm-like behavior for free-standing soft membrane was
recently predicted by means of Brownian dynamics theory.20

Analytically deriving the mobility tensor, the authors predicted
a crossover between Zimm-like to a Rouse-like regime moving
from a free-standing membrane to one confined between two
solid walls. To test this prediction, the MSDs calculated from
simulations where the liquid/liquid interface is sandwiched
between two solid (attractive) walls (see Figure 4S in the
Supporting Information) are compared with that obtained for a
free-standing interface. The comparison is limited to L25. The
computational results show that when the distance between the
walls is larger than 4σ, the polymer dynamics still follows the
Zimm-like model. But when the distance between the walls

Figure 5. Radial distribution function (RDF) calculated between the center of mass of the polymer and the solvent beads for chains of different
lengths: (left) the polymer is in bulk; (right) the polymer is at the interface. The dashed lines indicate the radius of gyration for the various polymer
chains.

Figure 6. Plot of the values of diffusion coefficient, D, for the central monomer and the relaxation time of its diffusive motion, τdiff, against the chain
length, N. The dashed lines indicate the best fitting of the data.
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reaches 4σ, the interface between the two liquids becomes
unstable and breaks. Since the polymer still tends to lower the
liquid/liquid interfacial area, the chain bends and part adsorbs
on the newly formed liquid/liquid interface and part adsorbs on
the walls (see Figure 4S in the Supporting Information). When
such a transition occurs, the Rouse dynamics is recovered (see
Figure 3S).
In conclusion, through molecular simulations we have
demonstrated that both polymer structure and dynamics can
change upon adsorption at a liquid−liquid interface. While the
structure undergoes a change to a “pancake” conformation
similar to that observed for polymers adsorbed on solid−liquid
interfaces, the dynamical properties do not obey the Rouse or
reptation behavior observed on solid surfaces. Rather, the
hydrodynamic interactions, which in the latter case appear to be
screened by the presence of the surface, still dominate, and the
polymer dynamics is described by the Zimm-law as for a
polymer in dilute solution. The effect that the presence of the
interface has on the polymer dynamics can be appreciated only
in the subdiffusive regime which, for short polymer chains,
almost disappears. We ascribe this reduced drag effect of the
solvent beads to their low density at the interface. These results
indicate that the damping of the hydrodynamics interactions
experimentally observed for polymer adsorbed on lipid bilayers
is probably not due to the softness of the interface. Our
simulation results are in agreement with recent theoretical
results20 which indeed indicate that a Zimm-like behavior is
expected for polymer absorbed on free-standing membrane and
observed Rouse-like dynamics only for membranes under high
confinement.
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